REPORT No. 20 # AERODYNAMIC COEFFICIENTS AND TRANSFORMATION TABLES By JOSEPH S. AMES Member, National Advisory Committee for Aeronautics | , | | | | | |---|---|--|---|--| | | | | | | | | | | · | | | | · | | | | ## REPORT NO. 20. #### **AERODYNAMIC** COEFFICIENTS AND TRANSFORMATION TABLES. By JOSEPH S. AMES. The problem of the transformation of numerical values expressed in one system of units into another set or system of units frequently arises in connection with aerodynamic problems. The following brief explanation, with tables of equivalents in various systems of units, has been prepared in order to facilitate such transformation. #### FUNDAMENTAL AERODYNAMICAL FORMULA. $F = C \rho S V^2$ where F is the total force acting on the aerofoil, ρ is the density of the air, S is the area of the aerofoil, V is the velocity of the aerofoil relative to the air and C is an abstract number, varying for a given aerofoil with its angle of incidence, independent of the choice of units, provided these are consistently used for all four quantities $(F, \rho, S, \text{ and } V)$. It follows that the pressure $$p = F/S = C \rho V^2$$ This is often written $$p = KV^2$$, i. e., $K = C\rho$ If one set of units is used in the expression of p and another in that of V, the facts may be expressed by writing $p = K' V^2$. The results of experiments are given in different ways in different countries. It is most desirable that they should all be given in terms of C. In what follows, tables will be given for the calculation of C: I. When K is given in the published results. II. When K' is given in the published results. Formulæ will then be given by which, knowing C, the pressure por total force F may be calculated. 393 ``` 1. If K is given in French Tables, it is understood, unless the con- trary is stated, that the units are as follows: Unit of pressure, "weight of a kilogram" per square meter. Unit of density, based upon— unit of mass, based upon- unit of force, "weight of a kilogram;" unit of length, meter; unit of time, second; unit of volume, cubic meter. Unit of velocity, meter per second. Hence \rho, the density, is equal to 0.125, provided the air is dry, at 15.6° C. (60° F.) and under 76 cm. of mercury pressure. Hence C=8K. If the air is at another temperature or pressure, correction must be made, as indicated in the section on such corrections. 2. If K is given in American Tables, it is understood, unless the contrary is stated, that the following units are used: Unit of pressure, "weight of a pound" per square foot. Unit of density, based upon— unit of mass, based upon- unit of force, "weight of a pound;" unit of length, foot; unit of time, second; unit of volume, cubic foot. Unit of velocity, foot per second. Hence \rho, the density, is equal to 0.00238, provided the air is dry, at 15.6° C. and under 76 cm. of mercury pressure Hence C=420.2~K II. 1. If K' is given in French Tables, it is understood, unless the contrary is stated, that the following units are used: Unit of pressure, "weight of a kilogram" per square meter. Unit of density, based upon— unit of mass, based upon— unit of force, "weight of a kilogram;" unit of length, meter; unit of time, second; unit of volume, cubic meter. Unit of velocity, kilometer per hour. \rho = 0.125 for "standard air." Hence K' = C \times 0.125 \times \frac{10^{-6}}{3600^{-2}} = 0.0096 C. Hence Hence C = 104.2 K' ``` 2. If K' is given in American Tables, it is understood, unless the contrary is stated, that the following units are used: Unit of pressure, "weight of a pound" per square foot. Unit of density, based uponunit of mass, based upon- unit of force, "weight of a pound;" unit of length, foot; unit of time, second; unit of volume, cubic foot. Unit of velocity, mile per hour. Hence = 0.00238 Hence $$K' = C \times 0.00238 \times \left(\frac{5280}{3600}\right)^2 = 0.00512C$$ Hence =195.3 K'. #### Summary. | | Unit of pressure. | Density. | Unit of velocity. | | |------------------|------------------------|----------|-------------------|------------| | French systems | "Weight of a kilogram" | 0. 125 | meter
second | C=8K. | | | "Weight of a kilogram" | 0. 125 | kilometer
hour | C=104.2K' | | American systems | "Weight of a pound" | 0.00238 | foot
second | C=420.2 K | | | "weight of a pound" | 0.00238 | mile
hour | C=195.3 K1 | English and German Tables usually give C directly. To obtain the Pressure, given C: By fundamental formula $p = C_P V^2$, provided units on both sides of the equation are consistent. Hence, in such a case, substitute the appropriate values of C, ρ , and V. If the units were not consistent, certain factors are not obtained as C. The following formulæ give the results of the substitution for ρ and this factor for those combinations of units generally used. $$\frac{p\text{"weight of a pound"}}{\text{square feet}} = C \times 0.00238 \qquad \left(V \text{ ft./sec.} \right)^2$$ $$\frac{p\text{"weight of pound"}}{\text{square feet}} = C \times 0.00512 \qquad \left(V \frac{\text{miles}}{\text{hour}} \right)^2$$ $$\frac{p\text{"weight of a pound"}}{\text{square inches}} = C \times 0.0000165 \qquad \left(V \frac{\text{feet}}{\text{second}} \right)^2$$ $$\frac{p\text{"weight of a pound"}}{\text{square inches}} = C \times 0.0000355 \qquad \left(V \frac{\text{miles}}{\text{hour}} \right)^2$$ $$\frac{p\text{"weight of a kilogram"}}{\text{square meters}} = C \times 0.125 \qquad \left(V \frac{\text{meters}}{\text{second}} \right)^2$$ $$\frac{p\text{"weight of a kilogram"}}{\text{square meters}} = C \times 0.0096 \qquad \left(V \frac{\text{kilometer}}{\text{hour}} \right)^2$$ For other units of pressure, calculate pressure by one of these formulæ and use transformation tables for pressures. Since the pressure is proportional to ρ , these formulæ apply only if the air is dry, at 15.6° C. and under 76 cm. of mercury pressure. CORRECTION FOR TEMPERATURE AND PRESSURE OF THE AIR. The following formulæ give the values of ρ for conditions of pressure other than standard: Temperature. - t° C. h (cm. of mercury) $\rho = \frac{3.79h}{t+273} \times \text{density at 15.6° C. and 76 cm.}$ - t° F. h (inches of mercury) $\rho = \frac{17.33h}{t+460} \times \text{density at } 60^{\circ}$ F. and 30 in. Since the pressure on the aerofoil is proportional to ρ , if we know the pressure calculated for standard conditions, and wish to know its value under other conditions, we must multiply this calculated pressure by the ratio of the densities of the air in the two conditions. That is, if we wish to calculate the pressure when the air is at h cm. of mercury at t° C., we must multiply the value of the pressure obtained from the formulæ of the last section by $\frac{3.79h}{t+273}$; Or, if we wish to calculate the pressure when the air is at h inches of mercury and t° F., we must multiply the value of the pressure obtained from the formulæ of the last section by $\frac{17.33h}{t+460}$ The approximate value of h for different heights above the earth's surface is given in tables. If moisture is to be taken into account in the values of ρ , reference may be made to the Smithsonian Meteorological Tables. #### BAROMETER AND ALTITUDE. In Tables I and II are given for values of the barometer as argument the corresponding elevations, assuming for the intermediate barometric column a uniform temperature of 50° F. for English measures and 0° C. for metric measure; the average temperature to be anticipated at such elevation, and the elevation corrected for temperature, assuming for the latter a mean value between temperature, at the bottom and the stated value at elevation. #### TRANSFORMATION TABLES. | I. Height above earth | 's surface deter- | |-----------------------|-------------------| | mined by barom | eter, corrected | | for temperature. | English units. | - II. Height above earth's surface determined by barometer, corrected for temperature. Metric units. III. Length equivalents. - IV. Area equivalents. V. Volume equivalents. VI. Capacity equivalents. - VII. Mass equivalents. VIII. Density equivalents. IX. Velocity equivalents. X. Acceleration equivalents. XII. Force equivalents. XIII. Couple equivalents. XIII. Pressure equivalents. XIV. Work equivalents. XV. Power equivalents. - XV. Power equivalents. - XVI. Temperature equivalents. Table I.—Height above earth's surface determined by barometer, corrected for temperature—English units. | Barometer,
inches of
mercury. | Elevation,
temperature
of 50° F. | Average tem-
perature at
elevation. | Elevation
(corrected). | |---|---|---|--| | 12
13
14
15
15
17
18
19
20
21
22
23
24
25
26
27
28
29, 9 | Feet. 21, 540 22, 640 22, 640 22, 640 18, 750 11, 350 11, 350 12, 320 10, 930 9, 600 8, 340 7, 120 8, 460 2, 770 8, 460 2, 770 1, 750 800 0 | * F31.6 -23.0 -15.0 -7.2 -0.0 -7.2 -0.0 10.1 18.8 23.0 27.0 30.5 24.5 48.0 43.5 48.0 50.0 | Feb. 22,750 20,9 | Table II.—Height above earth's surface determined by barometer, corrected for temperature—metric units. | Barometer,
mm. of
marcury. | Elevation,
temperature
of 0°. | Average tem-
perature at
elevation. | Elevation
(corrected). | |---|---|---|--| | 300
359
400
450
500
550
600
650
700
750
780 | Meters. 7, 480 6, 200 5, 130 4, 180 3, 350 2, 550 1, 890 1, 250 657 106 0 | - C.
-31.4
-25.4
-18.0
-17.4
-2.1
-2.8
-0.7
+4.4
+5.7
+10.0 | Meters. 7, 100 6,000 5,000 4,160 8,380 2,580 1,930 1,200 678 109 | TABLE III.—Length equivalents. | Units. | Inches. | Feet. | Yards. | Miles. | Centi-
meters. | Meters. | Kilo-
meters. | Nautical
miles. | |--------|---|---|---|--|---|---|--|---| | l inch | 1
12
36
63,360
.3937
39,87
39,870
72,962 | 0.06333
1
3
5,280
.03281
3.281
3,281
6,080.2 | 0.027.8
-333
1
1,760
.01094
1.0936
1,093.6
2,025.7 | 0.0 ₄ 1578
.0 ₆ 15939
.0 ₆ 5682
1 .0 ₆ 5214
.0 ₆ 5214
.6214
1.15155 | 2.540
30.430
91.440
160,934
1
100,000
135,325 | 0.0254
.30490
.9144
1,600.34
.01
1
1,000
1,853 | 0.04254
.043048
.049144
1.609
10-9
.001
1.8582 | 0.0 ₄ 13701
.0 ₄ 1544
.0 ₄ 4933
.9583
.00005395
.0005395
.5395 | TABLE IV .- Area equivalents. | Units. | Square
inches. | Square feet. | Square yards. | Square
miles. | Square
meters. | |---------------|------------------------------|--|---|--|--| | 1 square inch | 1
144
1,296
1,549.9 | 0.006944
1
9
27,878,400
10.764 | 0.007716
.111
1
3,097,600
1.196 | 0.0,2491
.0,3587
.0,3228
1
.0,3861 | 0.0,6452
.09290
.8361
2,589,908 | #### Table V.—Volume equivalents. | Units. | Cubic
inches. | Cubic feet. | Cubic
yards. | Cubic centi-
meters. | Cubic
meters. | |--------------|-------------------------------------|--|-------------------------------------|--|-------------------------------------| | 1 cubic inch | 1,728
46.656
.06102
61,023 | 0.0 ₈ 5787
1
27
.03581
85.314 | 0.0,2143
.03704
1
.0013079 | 16.39
28.317
764,559
1
1,000,000 | 0.0,1638
.02832
.7045
.001 | #### TABLE VI.—Capacity equivalents. | Units. | Cubic
inches. | Fluid
ounces. | Gills. | Liquid
pints. | Liquid
quarts. | Gallons
(U. S.). | Gallons
(Imperial). | Liters. | |---|--|--|--|---|--|--|--|---| | l cubic inch. I fiuld ounce I fill. I liquid pint I liquid quart 1 gallon (U. S.) I gallon (Imperial). I liter | 1.8046
7.2187
28.875
57.75
231
277.42
61.025 | 0.5541
1
4
16
32
128
153,718
33,814 | 0.1385
.25
1
4
8
8
32
38,423
8.453 | 0.3463
.0625
.25
1
2
8
9.608
2.113 | 0.01782
.03125
.125
.5
1
4
4.904
1.0877 | 0.04329
.007813
.03125
.125
.25
.1
1,201 | 0,0036046
.006506
.002602
.10408
.20833
.83265
1
.21975 | 0.01639
.02957
.118292
.473167
.9463
8.785
4.5458 | #### TABLE VII.—Mass equivalents. | | Kilo- | Grains. | Ounces. | | Pounds. | | Tons. | | | |---|---------------|--|---|---|--|--|--|--|--| | Units. | Units. grams. | | Troy. | Avoir-
dupois. | Troy. | Avoir-
dupois. | Short. | Long. | Metric. | | i kilogram I grain I ounce (troy) I ounce (avoirdupois) I pound (troy) I pound (avoirdupois) I ton, short I ton, long. I ton, metric. | .3732 | 15, 432
480
437. 5
5, 760
7, 000
140 ₄
15, 680 ₄
15, 432, 356 | 32.150
.002083
1
.9115
12
14.583
29,167
326,
82,151 | 35. 273
0. 02286
. 10971
1 13. 17
16
32, 000
35, 840
35, 274 | 2.6792
.0 ₁ 1736
.03333
.07695
1
1.2152
2,431
2,722
2,679 | 2.2046
.0 ₃ 1429
.06857
.0625
.8229
1
2,000
2,240
2,206 | 0.001102
.0;7143
.0;3429
.0;3125
.04114
.0005
1
1.12
1.102 | 0.029842
.076378
.043061
.02790
.02673
.04464
.8929
1 | 0.001
.0,6450
.0,3110
.02835
.03732
.0,4536
.9072
1.016 | #### Mass units used by engineers. A. English systems: Unit of mass=g pounds, where g is the acceleration due to gravity. Hence, on foot-second system, unit of mass=32.14 pounds; give it arbitrary symbol U_1 . Hance, on mile-hour system, unit of mass=78,900 pounds; give it arbitrary symbol U_2 . B. French systems: Unit of mass=g kilograms. Hence, on meter-second system, unit of mass=2.20 kilograms; give it arbitrary symbol U_2 . Hence, on kilometer-hour system, unit of mass=127,000 kilograms; give it arbitrary symbol U_2 . TABLE VIII.—Density equivalents. | Units. | Grams per
cubic
centimeter. | Pounds per
oubic inch. | Pounds per
cubic foot. | Kilograms per
cubic meter. | Pounds per
United States
gallon. | |--|---|--|---|--|--| | 1 gram per cubic centimeter
1 pound per cubic inch
1 pound per cubic foot
1 kilogram per cubic meter.
1 pound per U. S. gallon | 1
27.68
.01602
.09998
.1198 | 0.03613
1
.0 ₁ 5787
.003612
.004329 | 62.43
1,728
1
.06243
.7.481 | 1,000
277.02
15.02
1
119.845 | 8.345
231
.1337
.008345 | Using engineering units of mass. $1 \frac{\text{lb.}}{\text{ft.}^3} - 0.0311 \frac{\overline{U}_1}{\text{ft.}^3}; \ 1 \frac{\overline{U}_1}{\text{ft.}^3} - 32.14 \frac{\text{lb.}}{\text{ft.}^3}$ 1 $\frac{kg}{m.^2}$ =0.1020 $\frac{U_2}{m.^3}$; 1 $\frac{U_3}{m.^3}$ =9.80 $\frac{kg}{m.^2}$ #### TABLE IX. - Velocity equivalents. | Units. | Centime-
ters per
second. | Meters
per
second. | Meters
per
minute. | Kilome-
ters per
hour. | Feet per
second. | Feet per
minute. | Miles per
hour. | Knots. | |--|---------------------------------|---|--|--|--|--|---|--| | 1 centimeter per second
1 meter per second
1 meter per minute.
1 kilometer per hour
1 foot per second
1 foot per minute.
1 mile per hour
1 knot | 100
1.687 | .01
1
.01667
.2778
.3048
.00508
.4470
.51497 | 0.6
60
1
16.67
18.29
.3048
26.82
30.898 | 0.036
3.6
.06
1
1.097
.01829
1.609
1.8532 | 0.03281
3.281
.05468
.9113
1
.01667
1.467
1.63894 | 1.9685
196.85
3.281
54.68
60
1
88
101.337 | 0.02237
2.237
.03728
.6214
.6818
.01136
1 | 0.01942
1.942
.03237
.53960
.59209
.00987
.86839 | #### TABLE X .- Acceleration equivalents. | | em.
sec. ² | ft.
sec. 2 | mi.
hour.
sec. | |-------------------------------------|--------------------------|---------------|----------------------| | 1 centimeter per second, per second | 1 | 0. 3281 | 0.02237 | | 1 foot per second, per second | 30.48 | 1 | 0.6818 | | 1 mile per hour, per second | 44.70 | 1. 457 | 1 | TABLE XI.—Force equivalents. 1 megadyna=10 * dynes=72.33 poundals. 1 poundal =0.013825 megadynes. Engineering units: 1 kilogram= 0.930 megadynes. =70.88 poundals. = 2.2046 pounds. 1 pound = 0.45359 kilograms. TABLE XII.—Couple equivalents. 1 kilogram-meter=7.233 pound-feet. 1 pound-foot=0.1383 kilogram-meter. TABLE XIII .- Pressure equivalents. | Units. | Megabars or
megadynes
per square
centimeter. | | Kilograms
per
square
centimeter. | per
square | | Pounds
per
square
inch. | Pounds
per
square
foot. | Long
tons
per
square
inch. | |---|---|------------------|--|--|---------------------------------|--|---|--| | 1 megabar (=10° dynes per square centimeter). 1 kilogram per square centimeter ter. 1 kilogram per square meter. 1 pound per square foot. 1 long ton per square inch. 1 long ton per square inch. 1 atmosphere. Mercury {1 meter. | | | 1.0197
1
.07031
157.5
1.0333
1.3596 | 10,197
10,000
1
703.1
4.883
1,675,000
10,333
13,596 | | 14.50
14.22
1 .00694
14.70
19.34 .4912 | 2,058
2,047.6
2,048
144
1
2,116.8
2,784.9
70.732 | 0.000348 | | Water 1 inch 1 foot 1 foot | | | .09991 | | 345.3
999.1
25.4
304.5 | 1. 421
.03613
.4382 | 204. 62
5. 204
62. 380 | | | Units. | Long
tons
per | Atmos | | | | | | | | Units. | tons | | g 8 | ns of
\$ 15° | mercury
C. | | ins of water
: 15° C. | Feet. | | Units. | tons | Atmo
phere | g 8 | t 15° | | at | 15° C. | Feet. | | 1 megabar (=10 ⁴ dynes per
square centimeter) | tons
per
square
foot. | phere
0. 9869 | 9- 8
8. Meter
0.75 | t 15°
s. | С. | at | : 15° C Inches. 401.8 | 33.48
32.84 | | 1 megabar (-10 ⁴ dynes per
square centimeter) | tons
per
square
foot. | phere
0. 9869 | 9- 8
8. Meter
0.75 | t 15°
s. | C. Inches. 29.53 | Meters | . Inches. 401.8 394 .03937 | 33.48
32.84 | ### TABLE XIV.—Work or energy equivalents. | Units. | Joules—
10 ^f ergs. | Kilogram
meters. | Foot-
pounds. | Kilo-
watt
hours. | Cheval
vapeur
hours. | Horse-
power
hours. | Calo-
ries. | Kilo-
gram
calo-
ries. | British
thermal
units. | |---------|----------------------------------|---|---|--|--|--|--|---------------------------------|---| | i (cule | 4, 183
4, 183 | .1383
8.671x10 ⁴
270,000
2.7375x10 ⁴
.4266
426.6 | 7.283
1
2.655x10°
1.9829x10°
1.98x10°
3.086
3,096 | .0,2724
.0,3766
.1
.7855
.7457
.0,1162
.001163 | .0,37037
.0,51206
1.8596
1.0139
.0,159
.00158 | .0 ₆ 50505
1.341
.9863
1
.0 ₆ 1558 | 2, 344
3240
860, 500
632, 900
641, 700 | 860.5
632.9
641.7
.001 | .00930
.00128
8,415
2,512
2,547
.003958
3,968 | # REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. 401 TABLE XV.—Power equivalents. | Units. | Horse-
power | Kilo-
watts. | Cheval
vapeur
metric
horse-
power. | Meter kilo-
grams per
second. | Foot-
pounds per
second. | Kilogram
calories
per
second. | British
thermal
units per
second. | |--|------------------------------------|--------------------------------------|--|-------------------------------------|--------------------------------|---|--| | 1 horsepower | 1
1.341 | 0.7457
1 | 1.014
1.360 | 76.04
102.0 | 550
737.6 | 0.1783
.2390 | 0.7074
.9488 | | horsepower I meter kilogram per second I foot pound per second Lkilogram calorie per second | .9863
.01315
.00182
5.610 | .7855
.009807
.001856
4.183 | .01333
.00184
5.688 | 75
1
.1383
426.6 | 542.3
7.233
1
3,086 | .1758
.002344
.0 ₂ 3241
1 | .6977
.009303
.001256
3.968 | | 1 Brilish thermal unit per
second | 1.414 | 1.054 | 1.433 | 107.5 | 777.5 | . 2520 | 1 | 29165°—S. Doc. 128, 65–2——26